這個應該是目前研究的最多的方向之一了。GA密度小,且親油,可用于海洋廢油的回收利用。比較經典的一篇文章是Li Jihao 2014年發在JMCA上的一篇文章[2]。利用氣凝膠可以迅速吸油並且可通過擠壓將油再一次重新收集,又或者直接燃燒除去,而氣凝膠結構保持完好可循環利用。這也給氣凝膠應用于海洋廢油回收處理提供了應用。後來近兩年這方面又發了好多文章,尤其是Carbon上[3-5],這個老牌的碳材料期刊都有不停灌水之嫌,難怪有人說對作材料的人來說Carbon, JMCA, Nanosacle等是二流期刊,ACS Nano,Advaced Materials, Advanced Function Material, Angewandte Chemie International Edition,Small, nano letters, Journal of the American Chemical Society是一流期刊,science/nature等是頂級期刊。至於師兄發的ACS Nano上的文章,在氣凝膠中嵌入了鐵磁性四氧化三鐵納米粒子,使得氣凝膠帶有鐵磁性,這樣的話加磁場氣凝膠可以自行壓縮擠壓,實現了智能可控性和磁驅動性[6]。
[3] Jihao Li, Meng Hu et al, Ultra-Light,
Compressible and Fire-Resistant Graphene Aerogel as A Highly Efficient and Recyclable
Absorbent for Organic Liquids, J.Mater.Chem.A, 2014,2, 2934-2941 [4]Xinhong Song, Liping Lin et al, Mussel-inspired, Ultralight, Multifunctional 3D Nitrogen-Doped Graphene Aerogel, Carbon, 2014(80), 174-182 [5] Shervin Kabiri et al, Outstanding adsorption performance
of graphene–carbon nanotube aerogels
for continuous oil removal, Carbon, 2014(80):523-533 [6]Xiang Xu, Qiangqiang Zhang, Hui Li et al, Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron OxideAerogel Elastomer Deformable in a Magnetic Field, ACS Nano, 2015(4):3969-3977
相比於GA的親油可用於水除油,GOA卻對金屬離子有很強的吸附性。西北大學Sunjin Park 和 Nguyen曾做過金屬離子吸附到GO膜的實驗,發現GO在吸附金屬離子後膜強度有很大的提高[7]。而這對金屬離子的良好的吸附性延續到了GOA上,天津大學高建平在Carbon上報道了利用GOA處理水中Cu2+的報道,其對銅離子的吸附作用也表現出了很強的對PH的敏感性。這PH敏感性使得此氣凝膠可重複使用。首先控制PH為中性,則氣凝膠吸收大量銅離子,將此使用後氣凝膠取出放置於酸性條件下,則銅離子釋放,該氣凝膠又可重新使用[8]。
Arsenic contamination of groundwater
has led to a massive epidemic of arsenic
poisoning in South and South East Asia. It is estimated that 60 million people are
drinking groundwater with arsenic concentrations
above 10 ppb. Increased levels of
skin cancer were associated with arsenic exposure
in Wisconsin, even below 10 ppb.4
Arsenic can be removed from drinking water
through coprecipitation of iron minerals.5
Using the highly specific surface area of
Fe3O4 nanocrystals, the waste associated
with arsenic removal from water has recently
been substantially reduced.
[7]Sunjin Park, Nguyen, S.Ruoff, Graphene Oxide Papers Modified by Divalent Ions-Enhangcing Mechanical Properties via Chemical Cross-Linking, ACS Nano, 2008(2),3,572-578 [8]Xue Mi, Weisong Xie, Jianping Gao, Preparation of Graphene oxide aerogel and its adsorption for Cu2+ ions, Carbon, 2012(50), 4856-4864 [9]Vimlesh Chandra,Jaesung Park, Young Chun, Jung Woo Lee, In-Chul Hwang,* and Kwang S. Kim,Water-Dispersible Magnetite-Reduced
Graphene Oxide Composites for Arsenic
Removal, ACS Nano, 2010(4),7, 3979-3986
Catalysts for the oxygen reduction reaction (ORR) are key components of fuel cells. Pt and its alloys remain the most efficient ORR catalysts, but the high cost and scarcity of Pt hamper further development of fuel cell technologies based on these materials. In this respect, a broad range of alternative catalysts based on nonprecious metals (Fe, Co, etc.) or metal oxides (Fe2O3, Fe3O4, Co3O4, IrO2, etc.) as well as nitrogencoordinated metal on carbon and metal-free doped carbon materials have been actively pursued. Metal or metal oxide catalysts frequently suffer from dissolution, sintering, and agglomeration during operation of the fuel cell, which can result in catalyst degradation. To overcome this obstacle, nanostructured catalyst supports such as carbon (active carbon, porous carbon, carbon nanotubes, and graphene), metal, carbide, mesoporous silica, and conducting polymers have been developed to maximize the electroactive surface area of catalysts and improve their catalytic activity and durability.
[10]Zhong-Shuai Wu,Xinliang Feng et al, 3D Nitrogen-Doped Graphene Aerogel-Supported Fe3O4 Nanoparticles as Efficient Electrocatalysts for the Oxygen Reduction Reaction, J.Am.Chem.Soc.2012, 134, 9082-9085 [11]Liang Chen , Bin Wei , Xuetong Zhang , Chun Li, Bifunctional Graphene/ γ -Fe 2 O 3 Hybrid Aerogels with Double Nanocrystalline Networks for Enzyme Immobilization, Small, 2013(9), 13, 2331–2340 4. Supercapacitor Anode Materials
做石墨烯氣凝膠的怎麼都不會忘記的就是清華大學石高全[12],當然這個方向上做的人很多,不在舉例,電化學這塊我是一點都不懂,奈何我們課題組是土木出身。。。不然這塊一定是會去著重關注和研究的[12-14]。 [11]Xuetong Zhang et al, Spontaneous assembly of strong and conductive graphene/polypyrrole hybrid aerogels for energy storage, Nanoscale, 2014,6,12912 [12]Yu, M.P., Wang, A.J., Wang. Y.S., Li. C., Shi. G. Q., An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition. Nanoscale, 2014, 6(19): 11419-24 [13]Yu Chen, Bohan Song, Junming Xue, Ultra-small Fe3O4 nanoparticle decorated graphene nanosheets with superior cyclic performance and rate capability, Nanoscale, 2013, 5, 6797 [14]Seung Yol Jeong, Geon-Woong Lee, Monolithic Graphene Trees as Anode Materials for Lithium Ion Batteries with High C-Rates, Small, 2015 5.Sensors 感測器的話我看的文章不多,但也可以舉幾個例子:
Moreover, these as-prepared GO aerogels possess unique chemical activities toward some reducing gases such as H 2 S, HI, and SO 2 . All of these characteristics can make the resulting GO aerogel a promising candidate in the fi eld of environmental or mechanical engineering
另一個例子是長春應用化學所陳衛研究員發表在分析化學雜誌《Analytical Chemistry》上的一篇文章題目是"Three-Dimensional Mesoporous Graphene Aerogel-Supported SnO2 Nanocrystals for High-Performance NO2 Gas Sensing at Low Temperature" , 其提出了基於石墨烯氣凝膠載體的SnO2顆粒用於空氣中NO2氣體監測的應用[16]。 原理如下:SnO2(半導體)在還原性氣體氛圍下導電性增加,在氧化性氣體氛圍下導電性減弱,但目前SnO2的一些缺點限制了其應用,例如室溫下導電性差,基於SnO2的氣體感測器工作溫度高(H2:170-200℃,CO: 200℃),合成過程中SnO2容易團聚導致性能降低等。而利用石墨烯氣凝膠作為載體,然後負載上SnO2顆粒後幾乎完美地解決了這些問題,首先導電性得到很大提高,其次阻止了其團聚,連工作溫度都下降到了50℃,使得在常溫下應用成為可能。
下面開始給圖:
在100ppm NO2氛圍下的實驗:on表示輸入氣體,off表示關閉氣體輸入,可以發現其電阻變化值能夠在較短時間內(less than 6mins)在確定溫度下給出確定的響應,並且再移出氣體氛圍後經過一定時間可恢復重複使用。
[15]Xuetong Zhang, Edge-to-Edge Assembled Graphene Oxide Aerogels with Outstanding Mechanical Performance and Superhigh Chemical Activity, Small, 2013(9), 8, 1397–1404 [16]Lei Li, Shuijian He, Minmin Liu, Chunmei Zhang, Wei Chen, Three-Dimensional Mesoporous Graphene Aerogel-Supported SnO2 Nanocrystals for High-Performance NO2 Gas Sensing at Low Temperature. Analytical Chemistry, 2015,87,1638-1645
5. Other Applications 藥物定點釋放:這個是水凝膠了,石高全利用PVA和GO製備了對PH敏感的水凝膠,如下圖Fig.4所示該氣凝膠在不同PH下有不同的固液形態並可轉變,基於這個特性當藥物和其公共糅合在一起時便可起到定點釋放。該文中,其用VB12做了實驗,可以從Fig.5中發現當藥物到胃部是,由於胃液PH為2左右,水凝膠呈固體,藥物釋放,而當藥物進入腸道時,PH約為7.4,水凝膠呈液體,凝膠中的藥物釋放。所以利用該種氣凝膠便可實現遇酸分解或者對胃有刺激性的藥物的定點釋放[16]。
[17]Ling Qiu , Diyan Liu , Yufei Wang , Chi Cheng , Kun Zhou , Jie Ding , Van-Tan Truong , and Dan Li, Mechanically Robust, Electrically Conductive and Stimuli-Responsive Binary Network Hydrogels Enabled by Superelastic Graphene Aerogels, Adv.Mater , 2014, 26, 3333–3337 [18]Shengtong Sun and Peiyi Wu, A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating ploymer hydrogel networks, Journal of Material Chemisity, 2011, 21, 4095-4097 ----------------------------------------------------------------------------------------------------------------------------------- 小弱目前做的是石墨烯氣凝膠方向,可能和其他氣凝膠也有些不同,目前石墨烯材料就是研究熱點,電極材料也是,而石墨烯氣凝膠將這兩個很好的結合起來了,而石墨烯也很容易改性,摻個高分子什麼的,納米顆粒什麼的,很容易出成果(guan shui),所以做這個方向的研究是很有前景的。最好歡迎大家分享經典文章,相互交流!