曲線積分的計算方法如何來記憶

曲線積分的計算方法如何來記憶

來自專欄 fulyMath

聲明:本文為原創文章,首發於微信公眾號「湖心亭記」

篇文章還是為了回答一個學生問的問題。就是曲線積分公式那麼複雜,情況多種,怎麼去記住他們呢?今天我就來好好講一下這個問題。相信一直記不住曲線積分計算公式得同學看了一定會有驚喜收穫的。好了,廢話不多說,老師就把自己的幹活無私分享給有需要的同學吧。用心做數學教育,我一直在堅持

===============

首先我把教材上的曲線積分公式給原原本本的貼出來。大家看下情況還是挺多的。如下:

1、對弧長的曲線積分(第一類)

(1)如果L由y=y(x)給出,x屬於[a,b]

% MathType!MTEF!2!1!+- % feaagGart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqi-v0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaadaWdrbqaaiaadAgadaqadaqaaiaadIha % caGGSaGaamyEaaGaayjkaiaawMcaaiaadsgacaWGZbaaleaacaWGmb % aabeqdcqGHRiI8aOGaaGjcVlaayIW7caaMi8UaaGjcVlaayIW7cqGH % 9aqpdaWdXaqaaiaadAgadaqadaqaaiaadIhacaGGSaGaamyEamaabm % aabaGaamiEaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaWcbaGaamyy % aaqaaiaadkgaa0Gaey4kIipakmaakaaabaGaaGymaiabgUcaRmaabm % aabaGabmyEayaafaWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGL % OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaaqabaGccaWGKbGaamiEaa % aa!67B4! intlimits_L {fleft( {x,y} 
ight)ds} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = int_a^b {fleft( {x,yleft( x 
ight)} 
ight)} sqrt {1 + {{left( {yleft( x 
ight)} 
ight)}^2}} dx

(2)如果L由x=x(y)給出,y屬於[c,d],

% MathType!MTEF!2!1!+- % feaagGart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqi-v0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaadaWdrbqaaiaadAgadaqadaqaaiaadIha % caGGSaGaamyEaaGaayjkaiaawMcaaiaadsgacaWGZbaaleaacaWGmb % aabeqdcqGHRiI8aOGaaGjcVlaayIW7cqGH9aqpdaWdXaqaaiaadAga % daqadaqaaiaadIhadaqadaqaaiaadMhaaiaawIcacaGLPaaacaGGSa % GaamyEaaGaayjkaiaawMcaaaWcbaGaam4yaaqaaiaadsgaa0Gaey4k % IipakmaakaaabaGaaGymaiabgUcaRmaabmaabaGabmiEayaafaWaae % WaaeaacaWG5baacaGLOaGaayzkaaaacaGLOaGaayzkaaWaaWbaaSqa % beaacaaIYaaaaaqabaGccaWGKbGaamyEaaaa!6307! intlimits_L {fleft( {x,y} 
ight)ds} {kern 1pt} {kern 1pt} = int_c^d {fleft( {xleft( y 
ight),y} 
ight)} sqrt {1 + {{left( {xleft( y 
ight)} 
ight)}^2}} dy

(3)如果L由 % MathType!MTEF!2!1!+- % feaagGart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqi-v0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaadaGabaabaeqabaGaamiEaiabg2da9iaa % dIhadaqadaqaaiaadshaaiaawIcacaGLPaaaaeaacaWG5bGaeyypa0 % JaamyEamaabmaabaGaamiDaaGaayjkaiaawMcaaaaacaGL7baaaaa!4B97! left{ egin{array}{l} x = xleft( t 
ight)\ y = yleft( t 
ight) end{array} 
ight.% MathType!MTEF!2!1!+- % feaagGart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqi-v0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaacaWG0bGaeyicI48aamWaaeaacqaHXoqy % caGGSaGaeqOSdigacaGLBbGaayzxaaaaaa!47CF! t in left[ {alpha ,eta } 
ight]

% MathType!MTEF!2!1!+- % feaagGart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqi-v0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakeaadaWdrbqaaiaadAgadaqadaqaaiaadIha % caGGSaGaamyEaaGaayjkaiaawMcaaiaadsgacaWGZbaaleaacaWGmb % aabeqdcqGHRiI8aOGaaGjcVlaayIW7caaMi8UaaGjcVlaayIW7caaM % i8UaaGjcVlabg2da9maapedabaGaamOzamaabmaabaGaamiEamaabm % aabaGaamiDaaGaayjkaiaawMcaaiaacYcacaWG5bWaaeWaaeaacaWG % 0baacaGLOaGaayzkaaaacaGLOaGaayzkaaaaleaacqaHXoqyaeaacq % aHYoGya0Gaey4kIipakmaakaaabaWaaeWaaeaaceWG4bGbauaadaqa % daqaaiaadshaaiaawIcacaGLPaaaaiaawIcacaGLPaaadaahaaWcbe % qaaiaaikdaaaGccqGHRaWkdaqadaqaaiqadMhagaqbamaabmaabaGa % amiDaaGaayjkaiaawMcaaaGaayjkaiaawMcaamaaCaaaleqabaGaaG % OmaaaaaeqaaOGaamizaiaadshaaaa!740B! intlimits_L {fleft( {x,y} 
ight)ds} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = int_alpha ^eta {fleft( {xleft( t 
ight),yleft( t 
ight)} 
ight)} sqrt {{{left( {xleft( t 
ight)} 
ight)}^2} + {{left( {yleft( t 
ight)} 
ight)}^2}} dt

2、對坐標的曲線積分(第二類)

(1)如果L由y=y(x)給出,x屬於[a,b]

% MathType!MTEF!2!1!+- % feaagGart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqi-v0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakqaabeqaamaapefabaGaamiuamaabmaabaGa % amiEaiaacYcacaWG5baacaGLOaGaayzkaaGaamizaiaadIhacqGHRa % WkcaWGrbWaaeWaaeaacaWG4bGaaiilaiaadMhaaiaawIcacaGLPaaa % caWGKbGaamyEaaWcbaGaamitaaqab0Gaey4kIipakiaayIW7caaMi8 % oabaGaaeypamaapedabaWaamWaaeaacaWGqbWaaeWaaeaacaWG4bGa % aiilaiaadMhadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawIcaca % GLPaaacqGHRaWkcaWGrbWaaeWaaeaacaWG4bGaaiilaiaadMhacaGG % OaGaamiEaiaacMcaaiaawIcacaGLPaaacqGHIaYTceWG5bGbauaaai % aawUfacaGLDbaaaSqaaiaadggaaeaacaWGIbaaniabgUIiYdGccaWG % KbGaamiEaaaaaa!6F78! egin{array}{l} intlimits_L {Pleft( {x,y} 
ight)dx + Qleft( {x,y} 
ight)dy} {kern 1pt} {kern 1pt} \ {
m{ = }}int_a^b {left[ {Pleft( {x,yleft( x 
ight)} 
ight) + Qleft( {x,y(x)} 
ight) ullet y} 
ight]} dx end{array}

(2)如果L由x=x(y)給出,y屬於[c,d],

% MathType!MTEF!2!1!+- % feaagGart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqi-v0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaai % aabeqaamaabaabauaakqaabeqaamaapefabaGaamiuamaabmaabaGa % amiEaiaacYcacaWG5baacaGLOaGaayzkaaGaamizaiaadIhacqGHRa % WkcaWGrbWaaeWaaeaacaWG4bGaaiilaiaadMhaaiaawIcacaGLPaaa % caWGKbGaamyEaaWcbaGaamitaaqab0Gaey4kIipakiaayIW7caaMi8 % oabaGaaeypamaapedabaWaamWaaeaacaWGqbWaaeWaaeaacaWG4bWa % aeWaaeaacaWG5baacaGLOaGaayzkaaGaaiilaiaadMhaaiaawIcaca % GLPaaacqGHIaYTceWG4bGbauaadaqadaqaaiaadMhaaiaawIcacaGL % PaaacqGHRaWkcaWGrbWaaeWaaeaacaWG4bGaaiilaiaadMhacaGGOa % GaamiEaiaacMcaaiaawIcacaGLPaaaaiaawUfacaGLDbaaaSqaaiaa % dogaaeaacaWGKbaaniabgUIiYdGccaWGKbGaamyEaaaaaa!7204! egin{array}{l} intlimits_L {Pleft( {x,y} 
ight)dx + Qleft( {x,y} 
ight)dy} {kern 1pt} {kern 1pt} \ {
m{ = }}int_c^d {left[ {Pleft( {xleft( y 
ight),y} 
ight) ullet xleft( y 
ight) + Qleft( {x,y(x)} 
ight)} 
ight]} dy end{array}

(3)如果L由 [left{ egin{array}{l} x = xleft( t 
ight)\ y = yleft( t 
ight) end{array} 
ight.][t in left[ {alpha ,eta } 
ight]]

[egin{array}{l} intlimits_L {Pleft( {x,y} 
ight)dx + Qleft( {x,y} 
ight)dy} {kern 1pt} {kern 1pt} \ {
m{ = }}int_alpha ^eta {left[ {Pleft( {xleft( t 
ight),yleft( t 
ight)} 
ight) ullet xleft( t 
ight) + Qleft( {xleft( t 
ight),y(t)} 
ight) ullet yleft( t 
ight)} 
ight]} dt end{array}]

===============

好了,只是貼個公式,就佔用了那麼多篇幅,看來計算公式真的夠冗長的。其實大家仔細觀察上面的公式,無論第一型曲線積分還是第二型曲線積分,都只需要記住第三種情況就行了,因為前兩種都是第三種的特殊形式。那麼這就是今天我要介紹的簡單方法??哈哈,當然不是,我要介紹的比這個還簡單。

===============

好了,不說廢話。直接上乾貨。

一、第一類曲線積分的計算記憶方法

只需要記住這個式子:

[intlimits_L {fleft( {x,y} 
ight)ds} = intlimits_L {fleft( {x,y} 
ight)} sqrt {{{left( {dx} 
ight)}^2} + {{left( {dy} 
ight)}^2}} ]

關於這個式子是怎麼推導出來的,限於篇幅就不講了,基礎差的直接看課本就能找到推導過程。

那麼記住這個公式後,題目中的積分曲線是什麼形式,我們就直接代入這個公式就行了,然後將積分變數的上下限寫上去就可以了。代入的時候需要注意d表示的是求微分的運算就可以了,比如d(2x)=2dx。

舉一個例子吧。

例 計算 [intlimits_L {left( {x + y} 
ight)ds} ] 其中L為

(1)曲線y=x+1上在(0,1)到(1,2)之間的一段弧

(2)曲線x=2y-1上在(-1,0)到(1,2)之間的一段弧

解(1)

(2)

大家看,根本不用死記硬背那三種情況的計算公式,直接代入是不是很方便呢?!

二、第二類曲線積分的計算記憶方法

第二類曲線積分計算的更簡單,我告訴大家,根本不用去記憶上面的公式。怎麼計算呢?四個字:直接代入。

也就是說,只需要將曲線方程直接代入積分表達式,是誰,就把積分積分表達式里的這個變數全部替換即可。但是要注意最後是起點為積分上限,終點為積分下限。下面舉例說明。

例 計算曲線積分 [intlimits_L {{y^2}dx + 2xydy} ] 其中L為

(1)拋物線 [y = {x^2}] 上從(0,0)到(1,1)的一段弧

(2)拋物線 [x = {y^2}] 上從(1,1)到(0,0)的一段弧

解:(1)

因為曲線以 [yleft( x 
ight)] 的形式給出,所以直接代入曲線形式,將積分裡面所有的y都替換成 [{x^2}]

,包括dy中的y(但要注意這個時候要求微分)。最後再確定好積分上下限積分。如下:

[egin{array}{l} intlimits_L {{y^2}dx + 2xydy} = intlimits_L {{{left( {{x^2}} 
ight)}^2}dx + 2xleft( {{x^2}} 
ight)dleft( {{x^2}} 
ight)} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} \ {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = intlimits_L {5{x^4}dx} \ {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = int_0^1 {5{x^4}dx} = 1 end{array}]

(2)

因為曲線以 [xleft( y 
ight)] 的形式給出,所以直接代入曲線形式,將積分裡面所有的x都替換成 [{y^2}] ,包括dx中的x(但要注意這個時候要求微分)。最後再確定好積分上下限即可。如下:

[egin{array}{l} intlimits_L {{y^2}dx + 2xydy} = intlimits_L {{y^2}dleft( {{y^2}} 
ight) + 2{y^2}ydy} \ {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = intlimits_L {4{y^3}dy} \ {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} {kern 1pt} = int_1^0 {4{y^3}dy} = - 1 end{array}]

===============

好了,這篇文章看似篇幅這麼長,其實就說了兩個基本的問題。總結下:

第一類曲線積分計算方法:

(1)記住公式

[intlimits_L {fleft( {x,y} 
ight)ds} = intlimits_L {fleft( {x,y} 
ight)} sqrt {{{left( {dx} 
ight)}^2} + {{left( {dy} 
ight)}^2}} ]

(2)直接代入曲線方程。該求微分求微分,該確定積分上下限就確定積分上下限即可。

第二類曲線積分計算方法:

(1)直接代入曲線方程

(2)確定積分上下限直接計算即可。


推薦閱讀:

微積分(第二版)(下冊)課後習題答
高等數學(第六版)(上冊)-課後習題答案
關於f』(g(x))與[f(g(x)]』的區別 ——f(x+1/x)=x^2+1/x^2
麻省理工線性代數筆記(二)
牛頓—萊布尼茲公式

TAG:高等數學 | 微積分 | 多元微積分 |