標籤:

現代物理學的兩大支柱之一:量子力學

baike.baidu.com/tashuo/ 上面這個比我寫的好的多,希望有興趣的朋友可以看看

現在進入本期正題 量子力學 量子力學(Quantum Mechanics)是研究物質世界微觀粒子運動規律的物理學分支,主要研究原子、分子、凝聚態物質,以及原子核和基本粒子的結構、性質的基礎理論它與相對論一起構成現代物理學的理論基礎。量子力學不僅是現代物理學的基礎理論之一,而且在化學等學科和許多近代技術中得到廣泛應用。 19世紀末,人們發現舊有的經典理論無法解釋微觀系統,於是經由物理學家的努力,在20世紀初創立量子力學,解釋了這些現象。

量子力學從根本上改變人類對物質結構及其相互作用的理解。

除了廣義相對論描寫的引力以外,迄今所有基本相互作用均可以在量子力學的框架內描述(量子場論)。 量子力學是描寫原子和亞原子尺度的物理學理論 。

該理論形成於20世紀初期,徹底改變了人們對物質組成成分的認識。微觀世界裡,粒子不是撞球,而是嗡嗡跳躍的概率雲,它們不只存在一個位置,也不會從點A通過一條單一路徑到達點B 。根據量子理論,粒子的行為常常像波,用於描述粒子行為的「波函數」預測一個粒子可能的特性,諸如它的位置和速度,而非確定的特性 。物理學中有些怪異的概念,諸如糾纏和不確定性原理,就源於量子力學 。

19世紀末,經典力學和經典電動力學在描述微觀系統時的不足越來越明顯。量子力學是在20世紀初由馬克斯·普朗克、尼爾斯·玻爾、沃納·海森堡、埃爾溫·薛定諤、沃爾夫岡·泡利、路易·德布羅意、馬克斯·玻恩、恩里科·費米、保羅·狄拉克、阿爾伯特·愛因斯坦、康普頓等一大批物理學家共同創立的。量子力學的發展革命性地改變了人們對物質的結構以及其相互作用的認識。

量子力學得以解釋許多現象和預言新的、無法直接想像出來的現象,這些現象後來也被非常精確的實驗證明。除通過廣義相對論描寫的引力外,至今所有其它物理基本相互作用均可以在量子力學的框架內描寫(量子場論)。

量子力學並沒有支持自由意志,只是於微觀世界物質具有概率波等存在不確定性,不過其依然具有穩定的客觀規律,不以人的意志為轉移,否認宿命論。第一,這種微觀尺度上的隨機性和通常意義下的宏觀尺度之間仍然有著難以逾越的距離;第二,這種隨機性是否不可約簡難以證明,事物是由各自獨立演化所組合的多樣性整體,偶然性與必然性存在辯證關係。自然界是否真有隨機性還是一個懸而未決的問題,對這個鴻溝起決定作用的就是普朗克常數,統計學中的許多隨機事件的例子,嚴格說來實為決定性的。 在量子力學中,一個物理體系的狀態由波函數表示,波函數的任意線性疊加仍然代表體系的一種可能狀態。對應於代表該量的算符對其波函數的作用;波函數的模平方代表作為其變數的物理量出現的幾率密度。 量子力學是在舊量子論的基礎上發展起來的。舊量子論包括普朗克的量子假說、愛因斯坦的光量子理論和玻爾的原子理論。

1900年,普朗克提出輻射量子假說,假定電磁場和物質交換能量是以間斷的形式(能量子)實現的,能量子的大小同輻射頻率成正比,比例常數稱為普朗克常數,從而得出普朗克公式,正確地給出了黑體輻射能量分布。

1905年,愛因斯坦引進光量子(光子)的概念,並給出了光子的能量、動量與輻射的頻率和波長的關係,成功地解釋了光電效應。其後,他又提出固體的振動能量也是量子化的,從而解釋了低溫下固體比熱問題。 1913年,玻爾在盧瑟福原有核原子模型的基礎上建立起原子的量子理論。按照這個理論,原子中的電子只能在分立的軌道上運動,在軌道上運動時候電子既不吸收能量,也不放出能量。原子具有確定的能量,它所處的這種狀態叫「定態」,而且原子只有從一個 普朗克 定態到另一個定態,才能吸收或輻射能量。這個理論雖然有許多成功之處,對於進一步解釋實驗現象還有許多困難。 在人們認識到光具有波動和微粒的二象性之後,為了解釋一些經典理論無法解釋的現象,法國物理學家德布羅意於1923年提出了物質波這一概念。

認為一切微觀粒子均伴隨著一個波,這就是所謂的德布羅意波。 由於微觀粒子具有波粒二象性,微觀粒子所遵循的運動規律就不同於宏觀物體的運動規律,描述微觀粒子運動規律的量子力學也就不同於描述宏觀物體運動規律的經典力學。當粒子的大小由微觀過渡到宏觀時,它所遵循的規律也由量子力學過渡到經典力學。 1925年,海森堡基於物理理論只處理可觀察量的認識,拋棄了不可觀察的軌道概念,並從可觀察的輻射頻率及其強度出發,和玻恩、約爾當一起建立起矩陣力學;1926年,薛定諤基於量子性是微觀體系波動性的反映這一認識,找到了微觀體系的運動方程,從而建立起波動力學,其後不久還證明了波動力學和矩陣力學的數學等價性;狄拉克和約爾丹各自獨立地發展了一種普遍的變換理論,給出量子力學簡潔、完善的數學表達形式。 當微觀粒子處於某一狀態時,它的力學量(如坐標、動量、角動量、能量等)一般不具有確定的數值,而具有一系列可能值,每個可能值以一定的幾率出現。當粒子所處的狀態確定時,力學量具有某一可能值的幾率也就完全確定。這就是1927年,海森伯得出的測不準關係,同時玻爾提出了並協原理,對量子力學給出了進一步的闡釋。 量子力學和狹義相對論的結合產生了相對論量子力學。經狄拉克、海森伯(又稱海森堡,下同)和泡利等人的工作發展了量子電動力學。20世紀30年代以後形成了描述各種粒子場的量子化理論——量子場論,它構成了描述基本粒子現象的理論基礎。 量子力學基本的數學框架建立於:量子態的描述和統計詮釋、運動方程、觀測物理量之間的對應規則、測量公設、全同粒子公設的基礎上。 19世紀末20世紀初,經典物理已經發展到了相當完善的地步,但在實驗方面又遇到了一些嚴重的困難,這些困難被看作是「晴朗天空的幾朵烏雲」,正是這幾朵烏雲引發了物理界的變革。

下面簡述幾個困難:

黑體輻射問題 19世紀末,許多物理學家對黑體輻射非常感興趣。 普朗克 黑體是一個理想化了的物體,它可以吸收,所有照射到它上面的輻射,並將這些輻射轉化為熱輻射,這個熱輻射的光譜特徵僅與該黑體的溫度有關。使用經典物理這個關係無法被解釋。通過將物體中的原子看作微小的諧振子,馬克斯·普朗克得以獲得了一個黑體輻射的普朗克公式。但是在引導這個公式時,他不得不假設這些原子諧振子的能量,不是連續的(這與經典物理學的觀點相違背),而是離散的: En=nhν 這裡n是一個整數,h是一個自然常數。(後來證明正確的公式,應該以n+1/2來代替n,參見零點能量。)。1900年,普朗克在描述他的輻射能量子化的時候非常地小心,他僅假設被吸收和放射的輻射能是量子化的。今天這個新的自然常數被稱為普朗克常數來紀念普朗克的貢獻。 光電效應實驗 由於紫外線照射,大量電子從金屬表面逸出。經研究發現,光電效應呈現以下幾個特點: 光電效應 a. 有一個確定的臨界頻率,只有入射光的頻率大於臨界頻率,才會有光電子逸出。 b. 每個光電子的能量只與照射光的頻率有關。 c. 入射光頻率大於臨界頻率時,只要光一照上,幾乎立刻觀測到光電子。 以上3個特點,c是定量上的問題,而a、b在原則上無法用經典物理來解釋。

原子光譜學 光譜分析積累了相當豐富的資料,不少科學家對它們進行了整理與分析,發現原子光譜是呈分立的線狀光譜而不是連續分布。譜線的波長也有一個很簡單的規律。 盧瑟福模型發現後,按照經典電動力學,加速運動的帶電粒子將不斷輻射而喪失能量。故,圍繞原子核運動的電子終會因大量喪失能量而』掉到』原子核中去。這樣原子也就崩潰了。現實世界表明,原子是穩定的存在著。 能量均分定理 在溫度很低的時候能量均分定理不適用。 光量子理論 量子理論是首先在黑體輻射問題上突破的。普朗克為了從理論上推導他的公式,提出了量子的概念-h,不過在當時沒有引起很多人的注意。愛因斯坦利用量子假設提出了光量子的概念,從而解決了光電效應的問題。愛因斯坦還進一步把能量不連續的概念用到了固體中原子的振動上去,成功的解決了固體比熱在T→0K時趨於0的現象。

光量子概念在康普頓散射實驗中得到了直接的驗證。 玻爾的量子論 玻爾把普朗克-愛因斯坦的概念創造性的用來解決原子結構和原子光譜的問題,提出了他的原子的量子論。主要包括兩個方面: a. 原子能且只能穩定的存在分立的能量相對應的一系列的狀態中。這些狀態成為定態。 b. 原子在兩個定態之間躍遷時,吸收或發射的頻率v是唯一的,由hv=En-Em 給出。 玻爾的理論取得了很大的成功,首次打開了人們認識原子結構的大門,但是隨著人們對原子認識進一步加深,它存在的問題和局限性也逐漸為人們發現。 德布羅意波 在普朗克與愛因斯坦的光量子理論及玻爾的原子量子論的啟發下,考慮到光具有波粒二象性,德布羅意根據類比的原則,設想實物粒子也具有波粒二象性。

他提出這個假設,一方面企圖把實物粒子與光統一起來,另一方面是為了更自然的去理解能量的不連續性,以克服玻爾量子化條件帶有人為性質的缺點。實物粒子波動性的直接證明,是在1927年的電子衍射實驗中實現的。 量子物理學 量子力學本身是在1923-1927年一段時間中建立起來的。兩個等價的理論---矩陣力學和波動力學幾乎同時提出。矩陣力學的提出與玻爾的早期量子論有很密切的關係。海森堡一方面繼承了早期量子論中合理的內核,如能量量子化、定態、躍遷等概念,同時又摒棄了一些沒有實驗根據的概念,如電子軌道的概念。海森堡、玻恩和約爾丹的矩陣力學,從物理上可觀測量,賦予每一個物理量一個矩陣,它們的代數運算規則與經典物理量不同,遵守乘法不可易的代數。波動力學來源於物質波的思想。薛定諤在物質波的啟發下,找到一個量子體系物質波的運動方程-薛定諤方程,它是波動力學的核心。

後來薛定諤還證明,矩陣力學與波動力學完全等價,它是同一種力學規律的兩種不同形式的表述。事實上,量子理論還可以更為普遍的表述出來,這是狄拉克和約爾丹的工作。 量子物理學的建立是許多物理學家共同努力的結晶,它標誌著物理學研究工作第一次集體的勝利。

光電效應 1905年,阿爾伯特·愛因斯坦通過擴展普朗克的量子理論,提出不僅僅物質與電磁輻射之間的相互作用是量子化的,而且量子化是一個基本物理特性的理論。通過這個新理論,他得以解釋光電效應。海因里希·魯道夫·赫茲和菲利普·萊納德等人的實驗,發現通過光照,可以從金屬中打出電子來。同時他們可以測量這些電子的動能。不論入射光的強度,只有當光的頻率,超過一個臨限值(截止頻率)後,才會有電子被射出。此後被打出的電子的動能,隨光的頻率線性升高,而光的強度僅決定射出的電子的數量。愛因斯坦提出了光的量子(光子這個名稱後來才出現)的理論,來解釋這個現象。光的量子的能量為hν 原子能級躍遷 20世紀初盧瑟福模型是當時被認為正確的原子模型。

這個模型假設帶負電荷的電子,像行星圍繞太陽運轉一樣,圍繞帶正電荷的原子核運轉。在這個過程中庫侖力與離心力必須平衡。這個模型有兩個問題無法解決。首先,按照經典電磁學,這個模型不穩定。按照電磁學,電子不斷地在它的運轉過程中被加速,同時應該通過放射電磁波喪失其能量,這樣它很快就會墜入原子核。其次原子的發射光譜,由一系列離散的發射線組成,比如氫原子的發射光譜由一個紫外線系列(賴曼系)、一個可見光系列(巴耳末系)和其它的紅外線系列組成。按照經典理論原子的發射譜應該是連續的。

1913年,尼爾斯·玻爾提出了以他命名的玻爾模型,這個模型為原子結構和光譜線,給出了一個理論原理。玻爾認為電子只能在一定能量En的軌道上運轉。假如一個電子,從一個能量比較高的軌道(En),躍到一個能量比較低的軌道(Em)上時,它發射的光的頻率為。 通過吸收同樣頻率的光子,可以從低能的軌道,躍到高能的軌道上。 玻爾模型可以解釋氫原子,改善的玻爾模型,還可以解釋只有一個電子的離子,即He+,Li2+,Be3+等。但無法準確地解釋其它原子的物理現象。 電子的波動性 德布羅意假設,電子也同時伴隨著一個波,他預言電子在通過一個小孔或者晶體的時候,應該會產生一個可觀測的衍射現象。1925年,當戴維孫和革末在進行電子在鎳晶體中的散射實驗時,首次得到了電子在晶體中的衍射現象。

當他們了解到德布羅意的工作以後,於1927年又較精確地進行了這個實驗。實驗結果與德布羅意波的公式完全符合,從而有力地證明了電子的波動性。 電子的波動性也同樣表現在電子在通過雙狹縫時的干涉現象中。如果每次只發射一個電子,它將以波的形式通過雙縫後,在感光屏上隨機地激發出一個小亮點。多次發射單個電子或者一次發射多個電子,感光屏上將會出現明暗相間的干涉條紋。這就再次證明了電子的波動性。 電子打在屏幕上的位置,有一定的分布概率,隨時間可以看出雙縫衍射所特有的條紋圖像。假如一個光縫被關閉的話,所形成的圖像是單縫特有的波的分布概率。

從來不可能有半個電子,在這個電子的雙縫干涉實驗中,它是電子以波的形式同時穿過兩條縫,自己與自己發生了干涉,不能錯誤地認為是兩個不同的電子之間的干涉。值得強調的是這裡波函數的疊加是概率幅的疊加而不是如經典例子那樣的概率疊加,這個「態疊加原理」是量子力學的一個基本假設。 量子力學可以算作是被驗證的最嚴密的物理理論之一了。至今為止,所有的實驗數據均無法推翻量子力學。大多數物理學家認為,它「幾乎」在所有情況下,正確地描寫能量和物質的物理性質。

雖然如此,量子力學中,依然存在著概念上的弱點和缺陷,除上述的萬有引力的量子理論的缺乏外,至今為止對量子力學的解釋存在著爭議。 本期到此為止,但關於量子力學,還有很多沒有講清楚。

作者:CHeNGAIYA

bilibili.com/read/cv153

出處: bilibili


推薦閱讀:

TAG:量子物理 |